

 - 1 -

FileXtra3

Copyright (c) 1996-2000 by Kent Kersten

A free add-on for Director Lingo Programmers

 - 2 -

Table of Contents

Contact Info ...3
Target Platforms...3
How To Report Bugs ..3
Whither FileXtra?..4
Differences From Previous Versions ..5
Bug Fixes ...6

Bugs fixed in 3.0 ...6
Bugs fixed in 3.01 ...7

New Features ...8
Cross-Platform Information ...9

Path Specification ...9
How To Use The Xtra..10
Informational Methods ...11

fx_GetVersion ...12
File Methods ..13

fx_FileOpenDialog..14
fx_FileSaveAsDialog ...16
fx_FileExists...18
fx_FileIsLink...19
fx_FileRename...20
fx_FileDelete ...21
fx_FileRecycle..23
fx_FileCopy ...24
fx_FileMove...25
fx_FileGetWriteState ..27
fx_FileSetWriteState...28
fx_FileGetModDate ..29
fx_FileGetSize ...30
fx_FileGetType..31
fx_FileSetType ..33
fx_FileCompare...35
fx_FileOpenDocument ...36
fx_FilePrintDocument ...37
fx_FileGetAppPath ...38
fx_FileRunApp...40

Alias/Shortcut Methods ..42
fx_LinkCreate ..43
fx_LinkResolve...45

Folder Methods..46
fx_FolderSelectDialog ..47
fx_FolderGetSpecialPath..49
fx_FolderExists..55
fx_FolderCreate ..56
fx_FolderDelete ..57
fx_FolderRecycle...58
fx_FolderCopy ..59
fx_FolderMove..61
fx_FolderSyncOneWay ...63
fx_FolderSyncBothWays...65
fx_FolderToList ...67

Volume Methods ..68
fx_VolumeExists ..69
fx_VolumeGetFreeBytes...70
fx_VolumeGetTotalBytes..71
fx_VolumeIsCDROM...72
fx_VolumeIsRemovable ..73
fx_VolumeEject ...74
fx_VolumesToList..75

Error Reporting Methods..76
fx_ErrorNumber ..77
fx_ErrorString..78

Appendix A. Complete Listing of Error Codes..80

 - 3 -

Contact Info

FileXtra3 and its documentation are copyright (c) 1996-2000 by Kent Kersten. All rights reserved
worldwide.

Contact the author at kent@kblab.net.

The most current versions of my Xtras will be at http://www.kblab.net/xtras.

FileXtra3 is provided on an “as-is” basis, which basically means I assume no responsibility for how it is
used and have no liability if it does not suit your needs.

Target Platforms

FileXtra3 is designed to run on Macromedia Director versions 6 and newer for both the Power
Macintosh using System 8.5 or newer and Windows using Windows 95 OSR2, 98, 98 SE, Me; NT 4 or
Windows 2000. Original Windows 95 is not supported. You must have OSR2 if you are using Win 95.

Windows 95 and NT users need to have at least Internet Explorer 4.0 installed. This guarantees current
enough versions of critical system DLL’s are present for certain methods to work properly.

Note that FileXtra3 is very definitely NOT Shockwave-safe! Its ability to write information to permanent
storage via some of its method calls means that it cannot be considered safe and is not packaged that
way.

How To Report Bugs

Send an email to the author at kent@kblab.net. PLEASE provide the following information:

• the platform (Mac, PC, both)
• Director version
• OS version
• how much RAM you’ve got
• any error codes returned by FileXtra3 methods.

 - 4 -

Whither FileXtra?

FileXtra3 is a no-cost, cross-platform Lingo scripting Xtra for Macromedia Director versions 6 and
newer. You are free to use it in your projects and products at absolutely no cost. The only stipulation I
would place on you is that if you share the Xtra with someone who is a developer, please give them the
documentation as well.

The first version of the Xtra was called FileUtil and was released in 1996, soon after the release of
Director v5. I wrote the original version because I had migrated a commercial children’s educational
application from Director 4 to v5 to take advantage of the spiffy new features and Windows 95’s better
memory management.

However upon performing this migration, I realized that some of the ”XObjects” that worked with
Director 4 did not work with v5. This in effect crippled the application I was coding by taking away
certain functionality that only the XObjects provided.

So I madly scrambled to try and learn how to create these new extensions called “Xtras.” Macromedia
provided a developer’s kit along with some example code. A few weeks later I produced FileUtil. At
the time there were very few Xtras available. A west coast company contacted me and asked if I would
be interested in letting them resell the Xtra, which I agreed to on a non-exclusive basis.

After a few months I decided to pull the plug on this arrangement as it was inconvenient and costly to
users. I was more interested in granting free access to my Xtras so that they could be used by anyone
that needed the functionality.

Another reason for giving the Xtra away is that when I started Director programming with version 4,
there were many free XObjects to help developers like myself produce useful products. It became
more important to give something back to the community that helped me than to make a few dollars.

So I added some functionality and changed the name to FileXtra, and made it freely available to anyone
that needed it. According to the email I have received, it has been helpful to many other developers in
many other countries as well as here in the U.S. So I hope that if you are a new user you will find it
useful also.

 - 5 -

Differences From Previous Versions

If you have used an earlier version of FileXtra, you will find all of the old methods in the new release.

However, many things have fundamentally changed with the new release, including:

• you must now instantiate the Xtra before use, i.e. there are no longer any “global” methods
• the return values from methods are now True/False instead of error codes, with the

exception of methods that need to return a character string or a list
• error reporting methods are now provided
• all of the method names now begin with “fx_” so they will be immediately recognizable in

your code, and you won’t get FileXtra3 methods confused with other Xtras such as FileIO

I decided to require the Xtra be instantiated because in certain low-memory situations it is helpful to be
able to free up unneeded memory. This is also “cleaner” from an object-oriented perspective as
objects that are no longer in use can be destroyed and their memory reclaimed.

The previous versions of the Xtra returned any number of error codes when executed as a negative
number. This was great for an old C programmer like myself, but was unnecessarily bulky and confusing
for others. So FileXtra3 simply returns True (1) if a method succeeded and False (0) if it failed. The
exceptions to this are noted in the documentation and are mostly confined to methods that must return
a string (such as fx_FileOpenDialog) or a list (such as fx_VolumesToList).

Since I now return True/False from methods, some mechanism was needed to report on errors that
occurred. fx_ErrorNumber will report the error code from the last method that was executed, while
fx_ErrorString will return a human-readable interpretation of what happened.

Finally I prefixed all methods with “fx_” to make it perfectly clear that this was a call to FileXtra3. There
are enough Xtras out there now as to lead to confusion about what is being called in some cases. Also
the method names have been changed to make it clear what they are doing and what “group” they
belong to. So all of the file methods begin with “fx_File”, all of the folder methods begin with
“fx_Folder”, all of the link methods begin with “fx_Link”, all of the volume methods begin with
“fx_Volume” and all of the error methods begin with “fx_Error.”

Note also that it is possible to use the previous version of the Xtra at the same time as FileXtra3
because of these naming differences. This was done to aid in migration of projects to the new release.

 - 6 -

Bug Fixes

Unfortunately, as with any software project, there are problems that can occur with the code. Below is a
list of the known bugs and their fixes.

Bugs fixed in 3.0

• files copied from CD-ROM tagged as read only
• drive sizes over 2 GB reported incorrectly
• file open & save dialogs not modal
• file open & save dialogs not starting in desired directory (Macintosh only)
• fx_FolderExists now correctly reports root directories of volumes as folders (Macintosh only)
• UNC volume names on Windows caused problems
• maximum path length has been increased on the Macintosh from 256 to 1024 characters.

Previously FileXtra when copying files to a new location would replicate the file’s attributes, including
the read-only flag. Now in all cases when doing file copies FileXtra3 will make the destination files read-
write. This particular problem caused a great deal of angst among those using Director as a tool for
writing installers, with good reason.

Since FileXtra was first written, hard drive sizes have increased dramatically. New OS calls exist to
correctly report the sizes of these drives and FileXtra3 takes advantage of them. Note however that
Director’s “integer” type is not sufficiently large to handle these numbers, so double-precision floating
point numbers are returned instead.

The standard OS file open and save as dialog boxes are now modal. This solves another vexing
problem in that with previous versions of the Xtra, it was possible for a user to click outside of the
dialog box and make it hidden behind the Director stage, with no clear way to get it back.

On the Macintosh I have now figured out how to make the file open and save as dialog boxes start in
the desired directory. My thanks to Apple Computer for providing sample code as to the incredibly
convoluted way to do this.

With previous versions of the Xtra on the Macintosh using DirectoryExists(“some volume name”) would
report an error, whereas if you had appended a “:” to the end of the volume name it would have
worked. fx_FolderExists will correctly report the existence of the root directory (folder) in either case.

UNC named volumes on Windows are now supported by FileXtra3. (UNC stands for Universal Naming
Convention).

 - 7 -

Bugs fixed in 3.01

Below is a list of the known bugs fixed in 3.01. My thanks to everyone who reported problems and
provided the necessary details to zap these gremlins.

method platform(s) problem
* Windows NT 4 The Xtra could not load because it was

looking in shell32.dll (a system DLL) for a
function that only existed in Windows 2000,
Windows Me, Windows 98 or systems with the
Internet Explorer 4 “service pack 1” Desktop
Update package. (Fixed by using a different
combination of system calls.)

fx_FolderSelectDialog Macintosh Crashes machine when a root volume is
chosen. (Fixed)

fx_FolderSelectDialog Windows When a root volume is chosen (such as C:), it
appended an extraneous ‘\’ character. (Fixed)

fx_FileSaveAsDialog Macintosh If you did not append a ‘:’ to the end of your
‘initialPath’ argument it would not start in the
correct directory. (Fixed)

fx_FileCopy all FileXtra3 would allow you to try and copy a
file onto itself, with bad results such as the
truncation of the file to 0 bytes. (Fixed)

 - 8 -

New Features

There are many new features in this release of FileXtra, including a folder selection dialog, support for
alias/shortcut files, obtaining “special paths” from the system, recycling files and folders, moving files
and folders, opening and printing documents, synchronizing folder contents and ejecting removable
media, among others.

A listing of new methods is provided below:

• fx_GetVersion – returns the version of the Xtra
• fx_FileIsLink – tells whether the given file is really a “link” (alias/shortcut)
• fx_FileRecycle – move file(s) to the trash/recycle bin instead of immediate deletion
• fx_FileMove – relocate a file without copying & deleting
• fx_FileGetWriteState – get read-only flag for a file
• fx_FileSetWriteState – set or clear the read-only flag for a file
• fx_FileGetSize – returns the number of bytes a file uses on disk
• fx_FileGetType – get a file’s “type”
• fx_FileSetType – set a file’s “type”
• fx_FileCompare – compare two versions of a file to see if they are the same
• fx_FileOpenDocument – open a document
• fx_FilePrintDocument – print a document
• fx_FileGetAppPath – get the path to the application for the specified file type
• fx_FileRunApp – run an application
• fx_LinkCreate – create an alias (Mac) or shortcut (Windows) to a file
• fx_LinkResolve – find out what a link points to
• fx_FolderSelectDialog – pick a folder from a dialog
• fx_FolderGetSpecialPath – find the path to special system folders like the Desktop
• fx_FolderRecycle – send a folder and its contents to the Trash or Recycle Bin
• fx_FolderMove – relocate a folder and its contents without copying & deleting
• fx_FolderSyncOneWay – synchronize a folder’s contents in one direction only
• fx_FolderSyncBothWays – synchronize two folder’s contents so they match
• fx_VolumeGetTotalBytes – total number of bytes on a drive
• fx_VolumeIsRemovable – tests whether a volume uses removable media
• fx_VolumeEject – programmatically unmount & eject volumes such as CD-ROMs
• fx_ErrorNumber – error code returned by most recent FileXtra3 method call
• fx_ErrorString – human readable message about most recent error

 - 9 -

Cross-Platform Information

I have always produced cross-platform Director products, usually burned on hybrid CD-ROMs with both
Macintosh and PC versions. So naturally all of the code that I write, especially Xtras, must work on both
platforms. Not only that, but they must function as identically as possible between the two platforms so
that I don’t have to write a lot of “special-case” Director code to work around the gaps or limitations.

If it sounds like I’m lazy, I’m not, I just don’t like having to write a lot of extra code. Code that needs
extra development time. Code that needs extra testing.

FileXtra3 does an excellent job of providing identical functionality across platforms. Every method is
implemented on both platforms, not just Mac or Windows. There’s nothing I hate worse when using
somebody else’s Xtra for a project than to discover that a neat feature I want to use only works on one
platform!

Path Specification

FileXtra3 depends completely upon volume, folder and file “paths.” These paths are specified the
same between platforms with the exception of the path “separator” character. This character is a colon
(‘:’) for the Macintosh and a backslash (‘\’) for Windows.

Windows volumes typically start with a drive letter, such as ‘A’ or ‘C’, and include a colon. To specify
the root or top-most directory on a Windows machine you would use something like “C:\”.

To refer to shared or network volumes on Windows you use something called UNC names. While these
UNC-named volumes can be “mapped” to drive letters on a Windows machine, FileXtra3 does not
require that. FileXtra3 works with UNC-named volumes, such as “\\LinuxBox\kkersten\details.doc”.

Macintoshes of course do not have this split personality when it comes to naming volumes, whether
they be local or networked. A typical Macintosh pathname might be “Linux Server:Kent’s Director
files:details.doc”.

FileXtra3 does not care if you do or do not append ‘\’ or ‘:’ characters to the end of paths that end with
a folder name. The exception to this rule is for Windows, you must specify the root directory as C:\
instead of C:.

 - 10 -

How To Use The Xtra

To use FileXtra3, place it into your “Xtras” folder that resides in the same folder as your Director
executable.

To see a list of the methods available in the Message window, type the following:

 put xtra(“FileXtra3”).interface()

To “instantiate” or create an instance of the xtra, use the following code:

 fxObj = xtra(“FileXtra3”).new()

After instantiation, you can use any of the xtra’s methods as many times as you like.

I typically use the new “dot” syntax (available since at least Director 7) in my method calls, like so:

 fooStr = fxObj.fx_GetVersion()

Although you could also write the previous line as:

 fooStr = fx_GetVersion(fxObj)

When you are done using the xtra, free up its memory with the following code:

 fxObj = 0

 - 11 -

Informational Methods

There is currently only one informational method, and that returns the current version of the xtra.

fx_GetVersion

 - 12 -

fx_GetVersion

Name

fx_GetVersion – return the version of the xtra

Synopsis

strVar = fx_GetVersion(object me)

Description

This method returns a string that represents the version of FileXtra3 that is in use.

Return Type

String

Macintosh Notes

None.

Windows Notes

None.

Example

Using “dot” syntax:

fxObj = xtra(“FileXtra3”).new()

put fxObj.fx_GetVersion()

-- "3.01 FileXtra of 9-Nov-2000 (c) 1996-2000 by Kent Kersten"

fxObj = 0

Using the old (but still acceptable) syntax:

fxObj = xtra(“FileXtra3”).new()

put fxObj.fx_GetVersion()

-- "3.01 FileXtra of 9-Nov-2000 (c) 1996-2000 by Kent Kersten"

fxObj = 0

Error Codes

None.

 - 13 -

File Methods

File methods operate on a file or group of files. There are methods available to check for the existence
of a file, copy files, rename files, delete files, move files to the Trash or Recycle Bin, and others.

 fx_FileOpenDialog
 fx_FileSaveAsDialog
 fx_FileExists
 fx_FileIsLink
 fx_FileRename
 fx_FileDelete
 fx_FileRecycle
 fx_FileCopy
 fx_FileMove
 fx_FileGetWriteState
 fx_FileSetWriteState
 fx_FileGetModDate
 fx_FileGetSize
 fx_FileGetType
 fx_FileSetType
 fx_FileCompare
 fx_FileOpenDocument
 fx_FilePrintDocument
 fx_FileGetAppPath
 fx_FileRunApp

 - 14 -

fx_FileOpenDialog

Name

fx_FileOpenDialog – return the chosen filename from the File Open dialog

Synopsis

Macintosh: strVar = fx_FileOpenDialog(object me, string initialFolder, string filtStr)

Windows: strVar = fx_FileOpenDialog(object me, string initialFolder, string filtStr, string
dlogTitle, Boolean createPrompt, Boolean fileMustExist)

Description

This method returns a filename that the user chooses from a standard system File Open
dialog box. If no file is chosen, such as when the Cancel button is pressed, the empty string
(“”) is returned instead.

If a valid file is chosen, the complete path to the file is returned.

initialFolder is the path of the folder where the dialog should point to when opened.

filtStr is a string that tells what kind of files to show in the dialog. On Windows, these
consist of descriptor/extension pairs separated by `/', such as “Text Files/*.TXT/All
Files/*.*”. On the Macintosh, the filters are file `types' separated by `/', such as
“TEXT/WORD”. There is no limit to the number of filters on Windows, but you can specify a
maximum of four (4) filters on the Macintosh.

dlogTitle (Windows only) is the title of the Windows dialog. If you pass “”, the title defaults
to “Open.”

createPrompt (Windows only) is a boolean that tells the Windows dialog to prompt the
user about creating the file if the file does not already exist if you specify True. For instance,
the user can type the name of a file into the text box; if that file does not exist when they
press the “Open” button, a dialog will appear asking them if they wish to create it (only if
you specified True). If they answer “No”, the Open File dialog stays on the screen. If they
answer “Yes”, the filename is returned to the caller. Remember that you can use the
fx_FileExists() method to see if the file actually exists or not. Pass False to disable this
feature.

fileMustExist (Windows only) is a boolean that tells the Windows dialog that a user must
either select a file from the list or type the name of an existing file if this argument is True. If
they do not, a message will appear asking them to try again. Pass False to disable this
feature.

If an error occurs, the empty string “” is returned.

 - 15 -

Return Type

String

Macintosh Notes

None.

Windows Notes

None.

Example

Macintosh:

fxObj = xtra(“FileXtra3”).new()

put fxObj.fx_FileOpenDialog(“Macintosh HD:” “TEXT/WORD”)

-- "Macintosh HD:Documents:Word docs:File Formats"

fxObj = 0

Windows:

fxObj = xtra(“FileXtra3”).new()

put fxObj.fx_FileOpenDialog(“C:\My Documents\” “Text Files/*.TXT”,

“Choose a text file”, True, True)

-- "C:\My Documents\MISC\Nowxport.txt"

fxObj = 0

Error Codes

None.

 - 16 -

fx_FileSaveAsDialog

Name

fx_FileSaveAsDialog – return a filename entered in a Save As dialog

Synopsis

Macintosh: strVar = fx_FileSaveAsDialog(object me, string initialFolder, string filename,
string prompt)

Windows: strVar = fx_FileSaveAsDialog(object me, string initialFolder, string filename,
string dlogTitle, Boolean overwritePrompt)

Description

This method displays a system File Save As dialog box that allows the user to select a
directory and type in a filename to save a file under. The full path including the filename are
returned to the caller if the Save button was pressed. The empty string (“”) is returned if
Cancel was pressed.

initialDir is the path of the directory where the dialog should be opened.

filename is the name to show initially in the dialog box. The user can change this by typing
over it.

prompt (Macintosh only) is the text that appears above the name of the file. If you leave
this blank, it defaults automatically to “Save As:”.

dlogTitle (Windows only) will be used as the title bar text of the Windows dialog.

overwritePrompt (Windows only) is a boolean that, when True, brings up a warning dialog
if the user types in the name of an existing file and presses the Save button. If this flag is
False then no warning is given.

If an error occurs, the empty string “” is returned.

Return Type

String

Macintosh Notes

None.

Windows Notes

None.

 - 17 -

Example

Macintosh:

fxObj = xtra(“FileXtra3”).new()

put fxObj.fx_FileSaveAsDialog(“Macintosh HD:”, “myfile”, “Enter a filename:”)

-- “Macintosh HD:myfile”

fxObj = 0

Windows:

fxObj = xtra(“FileXtra3”).new()

put fxObj.fx_FileSaveAsDialog("c:\temp", "myfile.jpg", "Enter a filename", True)

-- "C:\Temp\myfile.jgp"

fxObj = 0

Error Codes

None.

 - 18 -

fx_FileExists

Name

fx_FileExists – check for the existence of a file

Synopsis

intVar = fx_FileExists(object me, string fileName)

Description

This method checks to see if fileName exists. You should of course as with all FileXtra3
methods use a complete path specification consisting of volume name, folder name(s) and
the file name.

Returns True (1) if the file exists, False (0) if not or if an error occurs.

Return Type

Integer

Macintosh Notes

None.

Windows Notes

You can pass wildcards for the filename. If any files match True (1) will be returned. If no
files match, False (0) is returned.

Example

fxObj = xtra(“FileXtra3”).new()

put fxObj.fx_FileExists(“Macintosh HD:pillow fight.doc”)

-- 1

fxObj = 0

Error Codes
Code Message Platform
0 Successful completion both
-7 File not found both
-8 Specified file is actually a folder both
-16 Specified folder is actually a file both
-51 Specified volume does not exist both
-52 Specified volume exists but is not mounted Win

 - 19 -

fx_FileIsLink

Name

fx_FileIsLink – tell whether the given file is actually a link

Synopsis

intVar = fx_FileIsLink(object me, string fileName)

Description

To determine if fileName is actually a link (alias/shortcut), use this method.

Remember that a link is still a file, even if it is a link to a folder.

Returns True (1) if the file is a link, False (0) if not or if an error occurs.

Return Type

Integer

Macintosh Notes

None.

Windows Notes

On Windows, the only thing that determines if a file is possibly a link is that its name ends
with “.lnk”. This extension is hidden from the user in Windows Explorer, but you can see it
if you do a fx_FolderToList() call.

Example

fxObj = xtra(“FileXtra3”).new()

put fxObj.fx_FileIsLink(“c:\temp\Shortcut to noodles.doc.lnk”)

-- 1

put fxObj.fx_FileIsLink(“c:\temp\Shortcut to noodles.doc”)

-- 0

fxObj = 0

Error Codes

Code Message Platform
0 Successful completion both
-7 File not found both
-8 Specified file is actually a folder both
-16 Specified folder is actually a file both
-51 Specified volume does not exist both
-52 Specified volume exists but is not mounted Win
-150 Specified link file is actually a normal file both

 - 20 -

fx_FileRename

Name

fx_FileRename – rename a file

Synopsis

intVar = fx_FileRename(object me, string oldName, string newName)

Description

Renames oldName to newName.

Returns True (1) if successful, False (0) if not or if an error occurs.

Attempting to rename a file to an existing folder name is considered naughty.

Return Type

Integer

Macintosh Notes

None.

Windows Notes

None.

Example

fxObj = xtra(“FileXtra3”).new()

put fxObj.fx_FileRename(“Macintosh HD:frooby”, “Macintosh HD:towel”)

-- 1

fxObj = 0

Error Codes
Code Message Platform
0 Successful completion both
-1 General error of unknown origin both
-6 File rename failure Mac
-7 File not found both
-8 Specified file is actually a folder both
-16 Specified folder is actually a file both
-51 Specified volume does not exist both
-52 Specified volume exists but is not mounted Win
-210 New filename already exists or two paths are different Win

 - 21 -

fx_FileDelete

Name

fx_FileDelete – delete file(s)

Synopsis

intVar = fx_FileDelete(object me, string fileName)

Description

Delete a single file (Macintosh) or a group of files (Windows – with wildcards).

Returns True (1) if successful, False (0) if not or if an error occurs.

Return Type

Integer

Macintosh Notes

None.

Windows Notes

You can use wildcards. Wildcards on Windows systems are ‘*’ for match 0 or more
characters and ‘?’ for match any one character. So to catch all files you would use “*.*”. If
you wanted to narrow it more you could use something like “picture?.jpg” to catch files
named picture0.jpg – picture9.jpg.

Example

Macintosh:

fxObj = xtra(“FileXtra3”).new()

put fxObj.fx_FileDelete(“Boot:plugh”)

-- 1

fxObj = 0

Windows:

fxObj = xtra(“FileXtra3”).new()

put fxObj.fx_FileDelete(“D:*.tmp”)

-- 1

fxObj = 0

 - 22 -

Error Codes
Code Message Platform
0 Successful completion both
-5 File deletion failure both
-7 File not found both
-8 Specified file is actually a folder both
-16 Specified folder is actually a file both
-18 Could not delete specified folder both
-51 Specified volume does not exist both
-52 Specified volume exists but is not mounted Win

 - 23 -

fx_FileRecycle

Name

fx_FileRecycle – place a file in the Trash/Recycle Bin

Synopsis

intVar = fx_FileRecycle(object me, string fileName)

Description

If for some reason you do not wish to immediately delete a file you can use this method to
place it into the systems Trash (Macintosh) or Recycle Bin (Windows).

Returns True (1) if successful, False (0) if not or if an error occurs.

Return Type

Integer

Macintosh Notes

None.

Windows Notes

This call will handle wildcards but will not operate recursively.

Example

fxObj = xtra(“FileXtra3”).new()

put fxObj.fx_FileRecycle(“C:\Gates\world domination plans.doc”)

-- 1

fxObj = 0

Error Codes

Code Message Platform
0 Successful completion both
-7 File not found both
-8 Specified file is actually a folder both
-16 Specified folder is actually a file both
-51 Specified volume does not exist both
-52 Specified volume exists but is not mounted Win
-93 FileRecycle failed Win
-140 Special folder type specified is unknown Mac
-141 FindFolder() system call failed Mac

 - 24 -

fx_FileCopy

Name

fx_FileCopy – copy file(s)

Synopsis

intVar = fx_FileCopy(object me, string fromFName, string toFName)

Description

Macintosh: Copy a single file to a new name and/or location.

Windows: Copy single or multiple files using wildcards.

Returns True (1) if successful, False (0) if not or if an error occurs.

Return Type

Integer

Macintosh Notes

None.

Windows Notes

You can use wildcards.

Example

fxObj = xtra(“FileXtra3”).new()

put fxObj.fx_FileCopy(“Macintosh HD:Annapurna.doc”, “Toad Hall:expedition plan.doc”)

-- 1

fxObj = 0

Error Codes
Code Message Platform
0 Successful completion both
-1 General error of unknown origin both
-5 File deletion failure both
-7 File not found both
-8 Specified file is actually a folder both
-9 File creation failure both
-10 File open failure Mac
-11 File write failure Mac
-13 File read failure Mac
-16 Specified folder is actually a file both
-17 Folder creation failure both
-26 Cannot copy a file onto itself both
-51 Specified volume does not exist both
-52 Specified volume exists but is not mounted Win

 - 25 -

fx_FileMove

Name

fx_FileMove – move a file to a new location

Synopsis

intVar = fx_FileMove(object me, string fromFName, string toFName)

Description

Instead of copying a file to a new location and deleting the old file, you can use this method
to move the original file instead. This would also be much faster than copy/delete.

fromFName refers to the source file to move.

toFName refers to the target file pathname.

You can only move a file within its current volume (drive). You cannot move a file to another
volume with this method.

You cannot move a file if a file already exists at the destination with the given name.

Returns True (1) if successful, False (0) if not or if an error occurs.

Return Type

Integer

Macintosh Notes

None.

Windows Notes

None.

Example

fxObj = xtra(“FileXtra3”).new()

put fxObj.fx_FileMove(“c:\urgent.ppt”, “c:\BitBucket\urgent.ppt”)

-- 1

fxObj = 0

 - 26 -

Error Codes
Code Message Platform
0 Successful completion both
-7 File not found both
-8 Specified file is actually a folder both
-16 Specified folder is actually a file both
-20 I/O error Mac
-21 Hardware volume lock Mac
-22 Software volume lock Mac
-23 Target directory is locked Mac
-51 Specified volume does not exist both
-52 Specified volume exists but is not mounted Win
-91 Destination file already exists both
-92 FileMove failed Win
-95 Attempt to move into offspring Mac

 - 27 -

fx_FileGetWriteState

Name

fx_FileGetWriteState – tell if the file is read-only

Synopsis

intVar = fx_FileGetWriteState(object me, string fileName)

Description

Return True (1) if fileName is writeable and False (0) if it is read-only or if an error occurs.

Return Type

Integer

Macintosh Notes

None.

Windows Notes

None.

Example

fxObj = xtra(“FileXtra3”).new()

put fxObj.fx_FileGetWriteState(“c:\config.sys”)

-- 0

fxObj = 0

Error Codes
Code Message Platform
0 Successful completion both
-7 File not found both
-8 Specified file is actually a folder both
-16 Specified folder is actually a file both
-51 Specified volume does not exist both
-52 Specified volume exists but is not mounted Win

 - 28 -

fx_FileSetWriteState

Name

fx_FileSetWriteState – return the version of the xtra

Synopsis

intVar = fx_FileSetWriteState(object me, string fileName, Boolean writeable)

Description

You can set fileName to be writeable by passing True (1) for the writeable parameter. To
make the file read-only, pass False (0) for writeable.

Returns True (1) if successful, False (0) if not or if an error occurs.

Return Type

Integer

Macintosh Notes

None.

Windows Notes

None.

Example

fxObj = xtra(“FileXtra3”).new()

put fxObj.fx_FileSetWriteState(“c:\config.sys”, False)

-- 1

fxObj = 0

Error Codes

Code Message Platform
0 Successful completion both
-7 File not found both
-8 Specified file is actually a folder both
-16 Specified folder is actually a file both
-51 Specified volume does not exist both
-52 Specified volume exists but is not mounted Win

 - 29 -

fx_FileGetModDate

Name

fx_FileGetModDate – return the last modified date for a file

Synopsis

stringVar = fx_FileGetModDate(object me, string fileName)

Description

This method returns the last modified time & date for fileName as a 25-character string as
follows: “Wed Jan 02 02:03:55 1980\n”. The `\n' is a newline character (ASCII 13). Note that
the time is in 24-hour format and numbers are zero-padded. I have done it this way
because that is the format that UNIX system calls return, and being a UNIX/Linux head, it
naturally seemed the best way.

If an error occurs, the null string “” is returned.

Return Type

String

Macintosh Notes

None.

Windows Notes

None.

Example

fxObj = xtra(“FileXtra3”).new()

put fxObj.fx_FileGetModDate(“Macintosh HD:Testuser”)

-- “Thu Oct 26 14:33:01 2000

“

fxObj = 0

Error Codes
Code Message Platform
0 Successful completion both
-1 General error of unknown origin both
-7 File not found both
-8 Specified file is actually a folder both
-16 Specified folder is actually a file both
-51 Specified volume does not exist both
-52 Specified volume exists but is not mounted Win

 - 30 -

fx_FileGetSize

Name

fx_FileGetSize – return the size in bytes of a file

Synopsis

floatVar = fx_FileGetSize(object me, string fileName)

Description

Return the size, in bytes, of fileName. If an error occurs, 0.0000 is returned.

The xtra must return the size as a floating-point number because Director integers are
limited to 231 in size, which is roughly 2 GB.

Return Type

Float

Macintosh Notes

The size of a Macintosh file is limited to 231 bits, or around 2 GB.

Windows Notes

Works for files > 2 GB in size.

Example

fxObj = xtra(“FileXtra3”).new()

put fxObj.fx_FileGetSize("C:\Program Files\Macromedia\Director 8\director.exe")

-- 4775936.0000

fxObj = 0

Error Codes

Code Message Platform
0 Successful completion both
-1 General error of unknown origin both
-7 File not found both
-8 Specified file is actually a folder both
-16 Specified folder is actually a file both
-51 Specified volume does not exist both
-52 Specified volume exists but is not mounted Win

 - 31 -

fx_FileGetType

Name

fx_FileGetType – return the type of a file

Synopsis

stringVar = fx_FileGetType(object me, string fileName)

Description

A file’s type determines what application can open or print that file.

On Macintosh, the value returned is an 8-byte character string that is the type and creator
put together, as in “TTTTCCCC”.

On Windows, the value returned is the file’s extension with the leading period intact, as in
“.txt” or “.html”.

The empty string “” is returned if an error occurs.

Return Type

String

Macintosh Notes

None.

Windows Notes

None.

Example

Macintosh:

fxObj = xtra(“FileXtra3”).new()

put fxObj.fx_FileGetType(“Macintosh HD:Documents:project notes”)

-- “W8BNMSWD”

fxObj = 0

Windows:

fxObj = xtra(“FileXtra3”).new()

put fxObj.fx_FileGetType(“C:\kent.html”)

-- “.html”

fxObj = 0

 - 32 -

Error Codes
Code Message Platform
0 Successful completion both
-7 File not found both
-8 Specified file is actually a folder both
-16 Specified folder is actually a file both
-51 Specified volume does not exist both
-71 No file type found for specified file Win

 - 33 -

fx_FileSetType

Name

fx_FileSetType – set the type of a file

Synopsis

intVar = fx_FileSetType(object me, string fileName, string fileType)

Description

Call this method to change the fileType for fileName. Be careful doing this as you can
disassociate a file from the application that created it or can open/print it.

Returns True (1) if successful, False (0) if not or if an error occurs.

Return Type

Integer

Macintosh Notes

The type is actually the “type” and “creator” put together in a single 8-byte character array.

Windows Notes

File types are the extension with a leading period, such as “.JPG” or “.TXT”.

Example

Macintosh:

fxObj = xtra(“FileXtra3”).new()

put fxObj.fx_FileCopy(“NT Server:product plan.doc”, “Macintosh HD:Product Plan”)

-- 1

put fxObj.fx_FileSetType(“Macintosh HD:Product Plan”, “W8BNMSWD”)

-- 1

fxObj = 0

Windows:

fxObj = xtra(“FileXtra3”).new()

put fxObj.fx_FileSetType(“C:\testfile.txt”, “.doc”)

-- 1

fxObj = 0

 - 34 -

Error Codes
Code Message Platform
0 Successful completion both
-1 General error of unknown origin both
-6 File rename failure Mac
-7 File not found both
-8 Specified file is actually a folder both
-16 Specified folder is actually a file both
-51 Specified volume does not exist both
-52 Specified volume exists but is not mounted Win
-71 No file type found for specified file Win
-210 New filename already exists or two paths are different Win

 - 35 -

fx_FileCompare

Name

fx_FileCompare – compare two versions of a file

Synopsis

intVar = fx_FileCompare(object me, string fileName, string fileName2)

Description

This method will compare two versions of a file. If they match, True (1) is returned and False
(0) if not, or if an error occurs. The files match if they have the same file size in bytes and
the same modification date.

If the return value is False then check fx_ErrorNumber to see why they did not match or to
get an error code.

Return Type

String

Macintosh Notes

None.

Windows Notes

None.

Example

fxObj = xtra(“FileXtra3”).new()

put fxObj.fx_FileCompare(“Boot:trip plans”, “offline:trip plans”)

-- 0

put fxObj.fx_ErrorNumber()

-- -103

put fxObj.fx_ErrorString()

-- "file two's mod date is newer than file one's"

fxObj = 0

Error Codes

Code Message Platform
0 Successful completion both
-1 General error of unknown origin both
-7 File not found both
-8 Specified file is actually a folder both
-16 Specified folder is actually a file both
-51 Specified volume does not exist both
-52 Specified volume exists but is not mounted Win
-101 File sizes are different both
-103 File two’s mod date is newer than file one’s both
-105 File one’s mod date is newer than file two’s both

 - 36 -

fx_FileOpenDocument

Name

fx_FileOpenDocument – open the given document

Synopsis

intVar = fx_FileOpenDocument(object me, string fileName)

Description

Given a path to a file, this method tries to determine the application that the file was
created with or is associated with. If found, the application is invoked and the document
opened.

Returns True (1) if successful, False (0) if not or if an error occurs.

Return Type

Integer

Macintosh Notes

None.

Windows Notes

None.

Example

fxObj = xtra(“FileXtra3”).new()

put fxObj.fx_FileOpenDocument(“c:\Xeno2000.ppt”)

-- 1

fxObj = 0

Error Codes
Code Message Platform
0 Successful completion both
-7 File not found both
-8 Specified file is actually a folder both
-16 Specified folder is actually a file both
-30 SHGetSpecialFolderLocation() call failed (bummer) Win
-42 Could not obtain Finder information for file Mac
-44 Not enough memory to launch application Mac
-51 Specified volume does not exist both
-71 No file type found for specified file Win
-73 No application associated with specified file type Win
-74 No \\shell\\open\\command key found for specified file type Win
-75 No \\shell\\print\\command key found for specified file type Win
-77 Problems reading desktop database Mac
-81 Specified application was not found; process not created Win
-122 Could not create FSSpec record Mac

 - 37 -

fx_FilePrintDocument

Name

fx_FilePrintDocument – print the given document

Synopsis

intVar = fx_FilePrintDocument(object me, string fileName)

Description

Given a path to fileName, this method tries to determine the application that the file was
created with or is associated with. If found, the application is invoked and the document
printed.

Returns True (1) if successful, False (0) if not or if an error occurs.

Return Type

Integer

Macintosh Notes

None.

Windows Notes

None.

Example

fxObj = xtra(“FileXtra3”).new()

put fxObj.fx_FilePrintDocument(“c:\Xeno2000.ppt”)

-- 1

fxObj = 0

Error Codes
Code Message Platform
0 Successful completion both
-7 File not found both
-8 Specified file is actually a folder both
-16 Specified folder is actually a file both
-30 SHGetSpecialFolderLocation() call failed (bummer) Win
-42 Could not obtain Finder information for file Mac
-44 Not enough memory to launch application Mac
-51 Specified volume does not exist both
-71 No file type found for specified file Win
-73 No application associated with specified file type Win
-74 No \\shell\\open\\command key found for specified file type Win
-75 No \\shell\\print\\command key found for specified file type Win
-77 Problems reading desktop database Mac
-81 Specified application was not found; process not created Win
-122 Could not create FSSpec record Mac

 - 38 -

fx_FileGetAppPath

Name

fx_FileGetAppPath – return the path to the application associated with a given file type

Synopsis

stringVar = fx_FileGetAppPath(object me, string fileType)

Description

Given a fileType, return a string that represents the path to the application that is
associated with that type.

Returns the empty string “” if an error occurs or if no application is associated with the
given type.

Return Type

String

Macintosh Notes

The fileType argument is an 8-byte character array of type & creator, as in “TTTTCCCC”.
We are really only using the creator bytes since we already know we are looking for a file
with a type of “APPL”.

Desktop databases are scanned for the answer to the question of what application runs the
particular documents using the given creator bytes. These databases are scanned in the
order of when volumes were mounted, so if SimpleText for example is on two drives, it will
find the one on the volume that was mounted first.

Please note that the case of the letters for type & creator matter! A creator of “MD01” will
successfully find Director 8 while “md01” will not.

Windows Notes

The registry on Windows NT/2000 contains entries containing symbolic variables
%SystemRoot% and %windir% for certain applications, usually Microsoft’s. FileXtra3
attempts to filter these and resolve them to the correct paths.

Note that the registry entries for some applications are surrounded by double quotes,
usually if they contain spaces in the path name. This is unfortunately not true in every case.

 - 39 -

Example

Macintosh:

fxObj = xtra(“FileXtra3”).new()

put fxObj.fx_FileGetAppPath(“APPLMD00”)

-- “Macintosh HD:Applications:Director 7:Director 7.0”

fxObj = 0

Windows:

fxObj = xtra(“FileXtra3”).new()

put fxObj.fx_FileGetAppPath(“.dir”)

-- ""C:\Program Files\Macromedia\Director 8\Director.exe""

fxObj = 0

Error Codes
Code Message Platform
0 Successful completion both
-30 SHGetSpecialFolderLocation() call failed (bummer) Win
-73 No application associated with specified file type Win
-74 No \\shell\\open\\command key found for specified file type Win
-75 No \\shell\\print\\command key found for specified file type Win
-77 Problems reading desktop database Mac

 - 40 -

fx_FileRunApp

Name

fx_FileRunApp – run an application

Synopsis

intVar = fx_FileRunApp(object me, string commandLine)

Description

Pass this method an application name and it will attempt to have the OS launch it.

Returns True (1) if successful, False (0) if not or if an error occurs.

Return Type

Integer

Macintosh Notes

You can only pass the path of an application to run. No arguments are allowed.

Windows Notes

You can pass an entire command line including the path to the application and any
arguments, such as the paths of files to open.

Example

Macintosh:

fxObj = xtra(“FileXtra3”).new()

put fxObj.fx_FileRunApp(“Macintosh HD:Applications:Director 7:Director 7.0”)

-- 1

fxObj = 0

Windows:

fxObj = xtra(“FileXtra3”).new()

put fxObj.fx_FileRunApp(“C:\Program Files\Macromedia\Director 8\director.exe

c:\test.dir”)

-- 1

fxObj = 0

 - 41 -

Error Codes
Code Message Platform
0 Successful completion both
-7 File not found both
-8 Specified file is actually a folder both
-16 Specified folder is actually a file both
-44 Not enough memory to launch application Mac
-51 Specified volume does not exist both
-81 Specified application was not found; process not created Win
-122 Could not create FSSpec record Mac

 - 42 -

Alias/Shortcut Methods

Files that refer to other files or folders but are not copies of those originals are called aliases on the
Macintosh and shortcuts on Windows. FileXtra3 allows you to make these “link” files and also to
determine the original file that they refer to.

 fx_LinkCreate
 fx_LinkResolve

 - 43 -

fx_LinkCreate

Name

fx_LinkCreate – create a link to a file or folder

Synopsis

intVar = fx_LinkCreate(object me, string fileName, string destFolder)

Description

A “link” is an alias (Macintosh) or shortcut (Windows) file that points to another file or
folder. This concept is useful if you need or want only one copy of a file or folder but need
it represented in more than one place.

fileName refers to a file or folder path that the link will point to.

destFolder refers to a folder name, not a filename. This folder is where the link file will be
created. Giving a complete pathname including filename will result in an error –126.

Please note that a link file is merely a “pointer” to the real file or folder, it does not contain
the contents of the original. So for example deleting the link file will not delete the original
file or folder that it points to.

Also keep in mind that a link to a folder is still a file. The respective Operating Systems give
the illusion to the user that a link to a folder “looks like” a folder, but it is actually a file.
Check this by using a fx_FileIsLink() method call.

Returns True (1) if successful, False (0) if not or if an error occurs.

Return Type

Integer

Macintosh Notes

The link file’s name has “ alias” appended. If you need to rename the alias, there are no OS
reasons why you have to keep this word in the filename.

Windows Notes

The link file’s name is the name of the file with “Shortcut to “ prepended. Use
fx_FileRename if you need to name it something else, but remember that the filename
MUST end with “.lnk” or Windows won’t know that it is a shortcut.

Also note that when you see a shortcut on a Windows system, Windows Explorer will not
show the “.lnk” extension. But if you do a fx_FolderToList() you will see the filename with
the .lnk appended.

 - 44 -

Example

fxObj = xtra(“FileXtra3”).new()

put fxObj.fx_LinkCreate(“c:\rfc959.txt”, “c:\temp”)

-- 1

put fxObj.fx_FileExists("c:\temp\Shortcut to rfc959.txt")

-- 0

put fxObj.fx_FileExists("c:\temp\Shortcut to rfc959.txt.lnk")

-- 1

fxObj = 0

Error Codes
Code Message Platform
0 Successful completion both
-5 File deletion failure both
-7 File not found both
-8 Specified file is actually a folder both
-15 Folder not found both
-16 Specified folder is actually a file both
-51 Specified volume does not exist both
-52 Specified volume exists but is not mounted Win
-122 Could not create FSSpec record Mac
-123 Could not create FSSpec record Mac
-124 NewAlias() toolbox call failed Mac
-125 NewAlias() toolbox call returned nil Mac
-126 Creating resource fork of alias file failed Mac
-127 Opening resource fork of alias file failed Mac
-128 AddResource() on alias file failed Mac
-129 WriteResource() on alias file failed Mac
-130 CloseResFile() on alias file failed Mac
-161 SetPath system call failed Win
-162 SetDescription system call failed Win
-163 IPersistFile::Save system call failed Win

 - 45 -

fx_LinkResolve

Name

fx_LinkResolve – determine what a link file refers to

Synopsis

intVar = fx_LinkResolve(object me, string fileName)

Description

Use this method to determine the target of a link file.

fileName is the name of the link file.

Returns True (1) if successful, False (0) if not or if an error occurs.

Return Type

Integer

Macintosh Notes

None.

Windows Notes

None.

Example

fxObj = xtra(“FileXtra3”).new()

put fxObj.fx_LinkResolve(“c:\temp\Shortcut to rfc959.txt.lnk”)

-- “C:\RFC959.TXT”

fxObj = 0

Error Codes
Code Message Platform
0 Successful completion both
-7 File not found both
-8 Specified file is actually a folder both
-16 Specified folder is actually a file both
-51 Specified volume does not exist both
-52 Specified volume exists but is not mounted Win
-122 Could not create FSSpec record Mac
-127 Opening resource fork of alias file failed Mac
-130 CloseResFile() on alias file failed Mac
-152 Could not read the alias resource Mac
-154 ResolveAlias() failed Mac
-155 Could not resolve alias path Win

 - 46 -

Folder Methods

This group of methods operates on folders (directories). Methods are available to create, delete, copy
recycle, move and synchronize folders and their files.

 fx_FolderSelectDialog
 fx_FolderGetSpecialPath
 fx_FolderExists
 fx_FolderCreate
 fx_FolderDelete
 fx_FolderRecycle
 fx_FolderCopy
 fx_FolderMove
 fx_FolderSyncOneWay
 fx_FolderSyncBothWays
 fx_FolderToList

 - 47 -

fx_FolderSelectDialog

Name

fx_FolderSelectDialog – select a folder from a dialog box

Synopsis

Macintosh: stringVar = fx_FolderSelectDialog(object me, string initialFolder)

Windows: stringVar = fx_FolderSelectDialog(object me, string infoString)

Description

If you need to have the user select a folder and not a file from a modal dialog, use this
method.

initialFolder (Macintosh only) gives a path to start the dialog in.

infoString (Windows only) allows you to specify an informational string in the dialog.

Returns a path to the folder selected, or the empty string “” if Cancel is chosen.

Returns the empty string “” if an error occurs.

Return Type

String

Macintosh Notes

You can specify the path to start the dialog in.

The returned pathname has a ‘:’ appended.

Windows Notes

You can specify an informational string to display, although it is of limited usefulness.

Windows by default starts the select dialog at the root of your system, “My Computer.”

The returned pathname has a ‘\’ appended.

 - 48 -

Example

Macintosh:

fxObj = xtra(“FileXtra3”).new()

put fxObj.fx_FolderSelectDialog(“Europa:Xtra”)

-- “Europa:Xtra:”

fxObj = 0

Windows:

fxObj = xtra(“FileXtra3”).new()

put fxObj.fx_FolderSelectDialog(“Choose a folder:”)

-- "C:\My Documents\Music\"

fxObj = 0

Error Codes
Code Message Platform
0 Successful completion both
-56 SHBrowseForFolder failed Win
-57 SHGetPathFromIDList failed Win

 - 49 -

fx_FolderGetSpecialPath

Name

fx_FolderGetSpecialPath – find the paths to all kinds of useful system folders

Synopsis

stringVar = fx_FolderGetSpecialPath(object me, string folderType)

Description

There are many “special” folders that both Operating Systems employ to facilitate various
tasks or features. These include desktop folders, trash folders, preferences folders, and
many others.

folderType is a string that specifies which special folder’s path you want. This string is case-
insensitive.

Returns the pathname to the desired folder if sucessful or the empty string “” if an error
occurs.

Return Type

String

 - 50 -

Macintosh Notes

The following table lists what “folderType” to use to obtain the desired folder path.

folderType meaning

kSystemFolderType System Folder on boot volume

kDesktopFolderType Desktop folder

kTrashFolderType Trash folder

kPrintMonitorDocsFolderType PrintMonitor Documents folder

kStartupItemsDisabledFolderType Startup Items (Disabled) folder

kShutdownFolderType Shutdown Items folder

kShutdownItemsDisabledFolderType Shutdown Items (Disabled) folder

kAppleMenuFolderType Apple Menu Items folder

kControlPanelFolderType Control Panels folder

kControlPanelDisabledFolderType Control Panels (Disabled) folder

kSystemExtensionDisabledFolderType System Extensions (Disabled)
folder

kExtensionFolderType Extensions folder

kExtensionDisabledFolderType Extensions (Disabled) folder

kFontsFolderType Fonts folder

kPreferencesFolderType Preferences folder

kTemporaryFolderType Temporary Items folder

kApplicationsFolderType Applications folder

kDocumentsFolderType Documents folder

 - 51 -

Windows Notes

Windows is pretty picky about what it will tell you regarding these folders. By having
Internet Explorer v5.0 or newer installed on your system you will be able to obtain most of
these paths. This is because there is a special system file, Shell32.dll, that gets updated
every so often and ships with IE.

Any folder name returned has a ‘\’ character appended.

The following table lists what “folderType” to use and its meaning. This is taken from the
Microsoft developer web site description for CSIDL values for the SHGetSpecialFolderPath
system call. Its web address is:
http://msdn.microsoft.com/library/psdk/shellcc/shell/Functions/CSIDL.htm.

folderType meaning

CSIDL_ALTSTARTUP File system directory that corresponds to the
user’s nonlocalized Startup program group.

CSIDL_APPDATA File system directory that serves as a common
repository for application-specific data. A
typical path is C:\Documents and
Settings\username\Application Data.

CSIDL_COMMON_ALTSTARTUP (NT only) File system directory that
corresponds to the nonlocalized Startup
program group for all users.

CSIDL_COMMON_APPDATA Application data for all users. A typical path is
C:\Documents and Settings\All
Users\Application Data.

CSIDL_COMMON_DESKTOPDIRECTORY (NT only) File system directory that contains
files and folders that appear on the desktop for
all users. A typical path is C:\Documents and
Settings\All Users\Desktop.

CSIDL_COMMON_FAVORITES (NT only) File system directory that serves as a
common repository for all users’ favorite items.

CSIDL_COMMON_PROGRAMS (NT only) File system directory that contains
the directories for the common program
groups that appear on the Start menu for all
users. A typical path is C:\Documents and
Settings\All Users\Start Menu\Programs.

CSIDL_COMMON_STARTMENU (NT only) File system directory that contains
the programs and folders that appear on the
Start menu for all users. A typical path is
C:\Documents and Settings\All Users\Start
Menu.

CSIDL_COMMON_STARTUP (NT only) File system directory that contains
the programs that appear in the Startup folder
for all users. A typical path is C:\Documents
and Settings\All Users\Start
Menu\Programs\Startup.

CSIDL_COOKIES File system directory that serves as a common
repository for Internet cookies. A typical path

 - 52 -

is C:\Documents and
Settings\username\Cookies.

CSIDL_DESKTOPDIRECTORY File system directory used to physically store
file objects on the desktop (not to be confused
with the desktop folder itself). A typical path is
C:\Documents and
Settings\username\Desktop.

CSIDL_FAVORITES File system directory that serves as a common
repository for the user’s favorite items. A
typical path is C:\Documents and
Settings\username\Favorites.

CSIDL_HISTORY File system directory that serves as a common
repository for Internet history items.

CSIDL_INTERNET_CACHE File system directory that serves as a common
repository for temporary Internet files. A
typical path is C:\Documents and
Settings\username\Temporary Internet Files.

CSIDL_LOCAL_APPDATA File system directory that serves as a data
repository for local (non-roaming) applications.
A typical path is C:\Documents and
Settings\username\Local Settings\Application
Data.

CSIDL_MYPICTURES My Pictures folder. A typical path is
C:\Documents and Settings\username\My
Documents\My Pictures.

CSIDL_NETHOOD A file system folder containing the link objects
that may exist in the My Network Places virtual
folder. It is not the same as CSIDL_NETWORK,
which represents the network namespace root.
A typical path is C:\Documents and
Settings\username\NetHood.

CSIDL_PERSONAL File system directory that serves as a common
repository for documents. A typical path is
C:\Documents and Settings\username\My
Documents.

CSIDL_PRINTHOOD File system directory that contains the link
objects that may exist in the Printers virtual
folder. A typical path is C:\Documents and
Settings\username\PrintHood.

CSIDL_PROFILE User’s profile folder.

CSIDL_PROGRAM_FILES Program Files folder. A typical path is
C:\Program Files.

CSIDL_PROGRAMS File system directory that contains the user’s
program groups (which are also file system
directories). A typical path is C:\Documents
and Settings\username\Start Menu\Programs.

CSIDL_RECENT File system directory that contains the user’s
most recently used documents. A typical path
is C:\Documents and
Settings\username\Recent.

 - 53 -

CSIDL_SENDTO File system directory that contains Send To
menu items. A typical path is C:\Documents
and Settings\username\SendTo.

CSIDL_STARTMENU File system directory containing Start menu
items. A typical path is C:\Documents and
Settings\username\Start Menu.

CSIDL_STARTUP File system directory that corresponds to the
user’s Startup program group. The system
starts these programs whenever any user logs
onto Windows NT or starts Windows 95. A
typical path is C:\Documents and
Settings\username\Start
Menu\Programs\Startup.

CSIDL_SYSTEM System folder. A typical path is
C:\WINNT\System32.

CSIDL_TEMPLATES File system directory that serves as a common
repository for document templates.

CSIDL_WINDOWS Windows directory or SYSROOT. This
corresponds to the %windir% or
%SystemRoot% environment variables. A
typical path is C:\WINNT.

 - 54 -

Example

fxObj = xtra(“FileXtra3”).new()

put fxObj.fx_FolderGetSpecialPath(“kSystemFolderType”)

-- “Boot:System Folder:”

fxObj = 0

Error Codes
Code Message Platform
0 Successful completion both
-30 SHGetSpecialFolderLocation() call failed (bummer) Win
-140 Special folder type specified is unknown Mac
-141 FindFolder() system call failed Mac

 - 55 -

fx_FolderExists

Name

fx_FolderExists – tell whether a given folder exists

Synopsis

intVar = fx_FolderExists(object me, string folderName)

Description

Use this method to determine the existence of the folderName path.

Returns True (1) if the folder path exists, False (0) if not or if an error occurs.

Return Type

Integer

Macintosh Notes

None.

Windows Notes

None.

Example

fxObj = xtra(“FileXtra3”).new()

put fxObj.fx_FolderExists(“Macintosh HD:System Folder”)

-- 1

fxObj = 0

Error Codes

Code Message Platform
0 Successful completion both
-15 Folder not found both
-16 Specified folder is actually a file both
-51 Specified volume does not exist both
-52 Specified volume exists but is not mounted Win

 - 56 -

fx_FolderCreate

Name

fx_FolderCreate – create a folder

Synopsis

intVar = fx_FolderCreate(object me, string folderName)

Description

This function creates a folder (directory) with the given path. If a folder or file already exists
with the given path and name, the function returns False (0). True (1) is returned if
successful.

Specify the folder to create by giving a complete path in folderName.

Note that if you specify multiple levels of folders to create, the method will attempt to
create them one at a time until it creates the final folder you specified.

False (0) is returned if an error occurs.

Return Type

Integer

Macintosh Notes

None.

Windows Notes

None.

Example

fxObj = xtra(“FileXtra3”).new()

put fxObj.fx_FolderExists(“\\LinuxBox\kkersten\one”)

-- 0

put fxObj.fx_FolderCreate(“\\LinuxBox\kkersten\one\two\three”)

-- 1

fxObj = 0

Error Codes
Code Message Platform
0 Successful completion both
-15 Folder not found both
-16 Specified folder is actually a file both
-17 Folder creation failure both
-51 Specified volume does not exist both
-52 Specified volume exists but is not mounted Win

 - 57 -

fx_FolderDelete

Name

fx_FolderDelete – delete a folder

Synopsis

intVar = fx_FolderDelete(object me, string folderName, Boolean recursive)

Description

This method is both powerful and dangerous. It will perform a “tree walk” to delete not
only the target directory and all its files given in the folderName argument, but it will also
delete all subfolders and their files if recursive is set to True.

Note that it is possible to erase an entire hard drive with the careless use of this
command! Issuing a command such as fx_FolderDelete(fxObj, “C:\”, True) will in fact erase
drive C:! Be warned!

Returns True (1) if successful, False (0) if not or if an error occurs.

Return Type

Integer

Macintosh Notes

None.

Windows Notes

None.

Example

fxObj = xtra(“FileXtra3”).new()

put fxObj.fx_FolderDelete(“C:\add to trash”)

-- 1

fxObj = 0

Error Codes

Code Message Platform
0 Successful completion both
-5 File deletion failure both
-7 File not found both
-8 Specified file is actually a folder both
-15 Folder not found both
-16 Specified folder is actually a file both
-18 Could not delete specified folder both
-19 Could not retrieve directory ID number Mac
-51 Specified volume does not exist both

 - 58 -

fx_FolderRecycle

Name

fx_FolderRecycle – move a folder and its contents to the Trash/Recycle Bin

Synopsis

intVar = fx_FolderRecycle(object me, string folderName)

Description

If you wish to move folderName to the trash rather than immediately deleting it, use this
method.

Returns True (1) if successful, False (0) if not or if an error occurs.

Return Type

Integer

Macintosh Notes

None.

Windows Notes

None.

Example

fxObj = xtra(“FileXtra3”).new()

put fxObj.fx_FolderRecycle(“C:\add to trash”)

-- 1

fxObj = 0

Error Codes

Code Message Platform
0 Successful completion both
-1 General error of unknown origin both
-15 Folder not found both
-16 Specified folder is actually a file both
-20 I/O error Mac
-21 Hardware volume lock Mac
-22 Software volume lock Mac
-23 Target directory is locked Mac
-51 Specified volume does not exist both
-52 Specified volume exists but is not mounted Win
-95 Attempt to move into offspring Mac
-98 FolderRecycle failed Win
-140 Special folder type specified is unknown Mac
-141 FindFolder() system call failed Mac

 - 59 -

fx_FolderCopy

Name

fx_FolderCopy – copy the contents of a folder and (possibly) subfolders

Synopsis

intVar = fx_FolderCopy(object me, string fromFolderNm, toFolderNm, Boolean recursive)

Description

This method copies all files in fromFolderNm into toFolderNm. If the recursive flag is set
all subfolders and their files will also be copied.

Returns True (1) if successful, False (0) if not or if an error occurs.

Return Type

Integer

Macintosh Notes

Invisible files are not copied by this or other file or folder commands.

Windows Notes

None.

Example

fxObj = xtra(“FileXtra3”).new()

put fxObj.fx_FolderCopy(“Macintosh HD:Documents”,

“Linux Server:kkersten:Documents Backup”, True)

-- 1

fxObj = 0

 - 60 -

Error Codes
Code Message Platform
0 Successful completion both
-1 General error of unknown origin both
-5 File deletion failure both
-7 File not found both
-8 Specified file is actually a folder both
-9 File creation failure both
-10 File open failure Mac
-11 File write failure Mac
-13 File read failure Mac
-15 Folder not found both
-16 Specified folder is actually a file both
-17 Folder creation failure both
-19 Could not retrieve directory ID number Mac
-26 Cannot copy a file onto itself both
-40 Could not allocate memory for file copy Mac
-51 Specified volume does not exist both

 - 61 -

fx_FolderMove

Name

fx_FolderMove – move a folder to a new location

Synopsis

intVar = fx_FolderMove(object me, string fromFolderName, string toFolderName)

Description

Use this method to move the contents of a folder, its files and subfolders to a new location
within the same volume.

fromFolderName refers to the source folder path to move.

toFolderName refers to the destination folder path.

Note that a folder can only be moved within its current volume. You cannot move a folder
to another volume (drive).

It is also impossible to move a folder into one of its child folders.

You cannot move the folder if a folder with the same name already exists at the destination.

Returns True (1) if successful, False (0) if not or if an error occurs.

Return Type

Integer

Macintosh Notes

None.

Windows Notes

None.

Example

fxObj = xtra(“FileXtra3”).new()

put fxObj.fx_FolderMove(“C:\First Run”, “C:\My Documents\First Run”)

-- 1

fxObj = 0

 - 62 -

Error Codes
Code Message Platform
0 Successful completion both
-1 General error of unknown origin both
-15 Folder not found both
-16 Specified folder is actually a file both
-20 I/O error Mac
-21 Hardware volume lock Mac
-22 Software volume lock Mac
-23 Target directory is locked Mac
-51 Specified volume does not exist both
-52 Specified volume exists but is not mounted Win
-95 Attempt to move into offspring Mac
-96 Destination folder already exists both
-97 FolderMove failed Win

 - 63 -

fx_FolderSyncOneWay

Name

fx_FolderSyncOneWay – synchronize two folders in one direction

Synopsis

intVar = fx_FolderSyncOneWay(object me, string fromFolderName, string toFolderName,
Boolean recursive, Boolean deleteStrays)

Description

This method has some very specialized uses. It “synchronizes” the contents of two folders,
but only in one direction, source -> destination. It optionally operates recursively. Another
option will clean up the destination directory by deleting files that are not present in the
source directory.

Every file in each folder is compared using fx_FileExists and fx_FileCompare. If a file exists
in only the source folder, it is copied to the destination folder. If a file exists in both folders,
and if the modified date of the file in the source folder is newer than the corresponding file
in the destination folder, then the file from the source folder is copied to the destination
folder.

In other words, this call ensures that all files in the source folder are the same or newer than
the ones in the destination folder.

A “stray” file is one that exists in the destination folder but not in the source folder.

If any of the destination folders do not exist, they will be created.

fromFolderName refers to the source or controlling folder.

toFolderName refers to the destination folder.

If the recursive flag is set to True, then the command will operate on all subfolders found.

If you want all files removed from the destination directory that do not exist in the source
directory, set the deleteStrays flag to True.

Returns True (1) if successful, False (0) if not or if an error occurs.

Return Type

Integer

Macintosh Notes

None.

 - 64 -

Windows Notes

None.

Example

fxObj = xtra(“FileXtra3”).new()

put fxObj.fx_FolderSyncOneWay(“Boot:Always Current:”, “Macintosh HD:My Files”,

True, True)

-- 1

fxObj = 0

Error Codes
Code Message Platform
0 Successful completion both
-1 General error of unknown origin both
-5 File deletion failure both
-7 File not found both
-8 Specified file is actually a folder both
-9 File creation failure both
-10 File open failure Mac
-11 File write failure Mac
-13 File read failure Mac
-15 Folder not found both
-16 Specified folder is actually a file both
-17 Folder creation failure both
-19 Could not retrieve directory ID number Mac
-26 Cannot copy a file onto itself both
-40 Could not allocate memory for file copy Mac
-51 Specified volume does not exist both
-52 Specified volume exists but is not mounted Win

 - 65 -

fx_FolderSyncBothWays

Name

fx_FolderSyncBothWays – synchronize two folders in both directions

Synopsis

intVar = fx_FolderSyncBothWays(object me, string folderName1, string folderName2,
Boolean recursive)

Description

This is another very specialized method. It synchronizes the contents of two folders in both
directions. It optionally operates recursively.

Every file in each folder is compared using fx_FileExists and fx_FileCompare. If a file exists
in only one folder, it is copied to the other folder. If a file exists in both folders, then the
newest version of the file, determined by its modification date, is copied to the other folder.

folderName1 refers to the first folder.

folderName2 refers to the second folder.

If the recursive flag is set to True, then the command will operate on all subfolders found.

Returns True (1) if successful, False (0) if not or if an error occurs.

Return Type

Integer

Macintosh Notes

None.

Windows Notes

None.

Example

fxObj = xtra(“FileXtra3”).new()

put fxObj.fx_FolderSyncBothWays(“Boot:Always Current:”, “Macintosh HD:My Files”, True)

-- 1

fxObj = 0

 - 66 -

Error Codes
Code Message Platform
0 Successful completion both
-1 General error of unknown origin both
-5 File deletion failure both
-7 File not found both
-8 Specified file is actually a folder both
-9 File creation failure both
-10 File open failure Mac
-11 File write failure Mac
-13 File read failure Mac
-15 Folder not found both
-16 Specified folder is actually a file both
-17 Folder creation failure both
-19 Could not retrieve directory ID number Mac
-26 Cannot copy a file onto itself both
-40 Could not allocate memory for file copy Mac
-51 Specified volume does not exist both
-52 Specified volume exists but is not mounted Win

 - 67 -

fx_FolderToList

Name

fx_FolderToList – return a list of folders given a path

Synopsis

listVar = fx_FolderToList(object me, string folderName)

Description

This function will create a Director list and place an item in the list for each file and folder
found within the given folder name.

folderName refers to the folder to create a list from.

If an error occurs, an empty list [] is returned.

Return Type

List

Macintosh Notes

Folder names in the list have a `:' character appended.

Windows Notes

Folder names in the list have a `\' character appended.

Note that on Windows you get back a listing of the directory’s contents, which is probably
not sorted. You may want to perform a sort on the list before using it.

Example

fxObj = xtra(“FileXtra3”).new()

put fxObj.fx_FolderToList(“c:\temp”)

-- [“abc.txt”, “AtGuard\”, “author.ppt”, “babbling.doc”, “matrix.exe”]

fxObj = 0

Error Codes

Code Message Platform
0 Successful completion both
-15 Folder not found both
-19 Could not retrieve directory ID number Mac

 - 68 -

Volume Methods

These are the methods that operate on volumes. A volume can be an entire disk drive or it can be a
“mount point” on a network file server.

 fx_VolumeExists
 fx_VolumeGetFreeBytes
 fx_VolumeGetTotalBytes
 fx_VolumeIsCDROM
 fx_VolumeIsRemovable
 fx_VolumeEject
 fx_VolumesToList

 - 69 -

fx_VolumeExists

Name

fx_VolumeExists – determine if the named volume exists on the system

Synopsis

intVar = fx_VolumeExists(object me, string volumeName)

Description

Returns True (1) if volumeName exists, False (0) if not, or if an error occurs.

Return Type

Integer

Macintosh Notes

On the Macintosh it is possible to have more than one volume with the same name. Be
aware that FileXtra3 cannot reconcile this, and it will find the volume with the correct name
that was mounted first.

Windows Notes

Note that you can pass in a complete path to this call and it won’t care. All it is interested
in is the volume name; however it makes no attempt to verify the validity of any path passed
in as an argument.

Also note that the Windows system call expects at a minimum a path to the root directory
on a volume, such as “c:\”. Using “c:” would cause the method to fail.

Example

fxObj = xtra(“FileXtra3”).new()

put fxObj.fx_VolumeExists(“\\LinuxBox\\kkersten\”)

-- 1

fxObj = 0

Error Codes
Code Message Platform
0 Successful completion both
-16 Specified folder is actually a file both
-51 Specified volume does not exist both
-52 Specified volume exists but is not mounted Win

 - 70 -

fx_VolumeGetFreeBytes

Name

fx_VolumeGetFreeBytes – return the amount of free space on a volume

Synopsis

floatVar = fx_VolumeGetFreeBytes(object me, string volumeName)

Description

Call this method to determine the number of bytes available on volumeName.

False (0) is returned on error.

Return Type

Float

Macintosh Notes

None.

Windows Notes

If you are using Windows 95 you must be using OSR2 and have Internet Explorer 4.0 or
newer installed for this method to work properly.

Example

fxObj = xtra(“FileXtra3”).new()

put fxObj.fx_VolumeGetFreeBytes(“C:\”)

-- 14947409920.0000

fxObj = 0

Error Codes

Code Message Platform
0 Successful completion both
-15 Folder not found both
-16 Specified folder is actually a file both
-51 Specified volume does not exist both
-52 Specified volume exists but is not mounted Win

 - 71 -

fx_VolumeGetTotalBytes

Name

fx_VolumeGetTotalBytes – return the total size of a volume

Synopsis

floatVar = fx_VolumeGetTotalBytes(object me, string volumeName)

Description

Call this method to determine the total number of bytes on volumeName.

False (0) is returned on error.

Return Type

Float

Macintosh Notes

None.

Windows Notes

If you are using Windows 95 you must be using OSR2 and have Internet Explorer 4.0 or
newer installed for this method to work properly.

Example

fxObj = xtra(“FileXtra3”).new()

put fxObj.fx_VolumeGetTotalBytes(“C:\”)

-- 20415111168.0000

fxObj = 0

Error Codes

Code Message Platform
0 Successful completion both
-15 Folder not found both
-16 Specified folder is actually a file both
-51 Specified volume does not exist both
-52 Specified volume exists but is not mounted Win

 - 72 -

fx_VolumeIsCDROM

Name

fx_VolumeIsCDROM – determine if a volume is a CD-ROM drive

Synopsis

intVar = fx_VolumeIsCDROM(object me, string volumeName)

Description

Call this method to determine if volumeName is a CD-ROM drive.

True (1) is returned if the volume is a CD-ROM drive, False (0) if not or if an error occurs.

Return Type

Integer

Macintosh Notes

This function checks the “lock” bit for the requested volume. This could also occur in odd
circumstances for volumes other than CD-ROM drives, so you could double-check the
results with fx_VolumeIsRemovable().

Windows Notes

None.

Example

fxObj = xtra(“FileXtra3”).new()

put fxObj.fx_VolumeIsCDROM(“My Burned Files”)

-- 1

fxObj = 0

Error Codes
Code Message Platform
0 Successful completion both
-15 Folder not found both
-16 Specified folder is actually a file both
-51 Specified volume does not exist both
-52 Specified volume exists but is not mounted Win
-61 Specified volume is not a CD-ROM both

 - 73 -

fx_VolumeIsRemovable

Name

fx_VolumeIsRemovable – determine if a volume uses removable media

Synopsis

intVar = fx_VolumeIsRemovable(object me, string volumeName)

Description

Call this method to determine if volumeName uses removable media. This applies to CD-
ROM drives as well.

Returns True (1) if volume supports removable media, False (0) if not or if an error occurs.

Return Type

Integer

Macintosh Notes

None.

Windows Notes

None.

Example

fxObj = xtra(“FileXtra3”).new()

put fxObj.fx_VolumeIsRemovable(“My Burned Files”)

-- 1

fxObj = 0

Error Codes

Code Message Platform
0 Successful completion both
-16 Specified folder is actually a file both
-51 Specified volume does not exist both
-62 Specified volume is not removable both

 - 74 -

fx_VolumeEject

Name

fx_VolumeEject – eject media from a volume

Synopsis

intVar = fx_VolumeEject(object me, string volumeName)

Description

Call this method to eject media from a drive that supports removable media.

volumeName refers to the volume to eject media from.

Returns True (1) if media is successfully ejected, False (0) if not or if an error occurs.

Return Type

Integer

Macintosh Notes

None.

Windows Notes

None.

Example

fxObj = xtra(“FileXtra3”).new()

put fxObj.fx_VolumeEject(“My Burned Files”)

-- 1

fxObj = 0

Error Codes
Code Message Platform
0 Successful completion both
-16 Specified folder is actually a file both
-51 Specified volume does not exist both
-62 Specified volume is not removable both
-63 Specified volume has open files on it Mac
-64 Problems with Eject() call Mac
-65 Problems with UnmountVol() call Mac
-81 Specified application was not found; process not created Win
-82 Cannot unlock media Win
-83 Cannot eject media Win
-84 Cannot eject volume Win

 - 75 -

fx_VolumesToList

Name

fx_VolumesToList – return a list of volumes on the system

Synopsis

listVar = fx_VolumesToList(object me)

Description

Call this method to obtain a list of volumes. Note that volumes that support removable
media but do not currently have media inserted are still listed. You can call fx_VolumeExists
followed by fx_ErrorNumber to check a volume and see if media is mounted or not.

Returns the empty list [] if an error occurs.

Return Type

List

Macintosh Notes

Trailing ‘:’ characters are appended to the names listed. The Mac OS always returns the
directory list in alphabetical order.

Windows Notes

Trailing ‘\’ characters are appended to the names listed.

Note that no UNC-named volumes will be listed with this call. If any remotely mounted
volumes have been mapped to drive letters, then those drive letters appear in the list.

Example

fxObj = xtra(“FileXtra3”).new()

put fxObj.fx_VolumesToList()

-- [“Boot:”, “X:”, “Kent 30gb:”, “Public Files:”]

fxObj = 0

Error Codes

None.

 - 76 -

Error Reporting Methods

These two methods report the error code of the last method to be invoked and provide a text string
interpreting what the error means or what happened to cause the error.

 fx_ErrorNumber
 fx_ErrorString

 - 77 -

fx_ErrorNumber

Name

fx_ErrorNumber – return the error code from the most recent method call

Synopsis

intVar = fx_ErrorNumber(object me)

Description

Each time you call a FileXtra3 method and it returns False, you should call fx_ErrorNumber
to determine the error code. Your lingo code can then decide best how to recover or
proceed.

Return Type

Integer

Macintosh Notes

None.

Windows Notes

None.

Example

fxObj = xtra(“FileXtra3”).new()

put fxObj.fx_FileExists(“c:\brownwood derby.htm”)

-- 0

put fxObj.fx_ErrorNumber()

-- -7

fxObj = 0

Error Codes

None.

 - 78 -

fx_ErrorString

Name

fx_ErrorString – return an error string from the most recent method call

Synopsis

stringVar = fx_ErrorString(object me)

Description

Each time you call a FileXtra3 method and it returns False, you can call fx_ErrorString to
receive a human-readable explanation of what happened. This won’t always be useful
information to you, such as when a link file on Windows can’t be created and you get back a
message that says:

 SetPath system call failed

But it will give you enough information (hopefully) to contact me and pass it along in case it
is a bug.

If the error code returned by the previous method call is undefined (which is very unlikely),
you will see the following message:

 Undetermined error

If the error code returned by the previous method indicates a successful completion (True
return code), the message you will see is:

 Successful completion

Return Type

String

Macintosh Notes

None.

Windows Notes

None.

Example

fxObj = xtra(“FileXtra3”).new()

put fxObj.fx_FileExists(“c:\brownwood derby.htm”)

-- 0

put fxObj.fx_ErrorString()

-- “File not found”

fxObj = 0

 - 79 -

Error Codes

None.

 - 80 -

Appendix A. Complete Listing of Error Codes

Code Message Platform
0 Successful completion both
-1 General error of unknown origin both
-5 File deletion failure both
-6 File rename failure Mac
-7 File not found both
-8 Specified file is actually a folder both
-9 File creation failure both
-10 File open failure Mac
-11 File write failure Mac
-13 File read failure Mac
-14 Destination volume full Mac
-15 Folder not found both
-16 Specified folder is actually a file both
-17 Folder creation failure both
-18 Could not delete specified folder both
-19 Could not retrieve directory ID number Mac
-20 I/O error Mac
-21 Hardware volume lock Mac
-22 Software volume lock Mac
-23 Target directory is locked Mac
-26 Cannot copy a file onto itself both
-30 SHGetSpecialFolderLocation() call failed (bummer) Win
-40 Could not allocate memory for file copy Mac
-42 Could not obtain Finder information for file Mac
-44 Not enough memory to launch application Mac
-51 Specified volume does not exist both
-52 Specified volume exists but is not mounted Win
-56 SHBrowseForFolder failed Win
-57 SHGetPathFromIDList failed Win
-61 Specified volume is not a CD-ROM both
-62 Specified volume is not removable both
-63 Specified volume has open files on it Mac
-64 Problems with Eject() call Mac
-65 Problems with UnmountVol() call Mac
-71 No file type found for specified file Win
-73 No application associated with specified file type Win
-74 No \\shell\\open\\command key found for specified file type Win
-75 No \\shell\\print\\command key found for specified file type Win
-77 Problems reading desktop database Mac
-81 Specified application was not found; process not created Win
-82 Cannot unlock media Win
-83 Cannot eject media Win
-84 Cannot eject volume Win
-91 Destination file already exists both
-92 FileMove failed Win
-93 FileRecycle failed Win
-95 Attempt to move into offspring Mac
-96 Destination folder already exists both
-97 FolderMove failed Win
-98 FolderRecycle failed Win
-101 File sizes are different both
-103 File two’s mod date is newer than file one’s both

 - 81 -

-105 File one’s mod date is newer than file two’s both
-122 Could not create FSSpec record Mac
-123 Could not create FSSpec record Mac
-124 NewAlias() toolbox call failed Mac
-125 NewAlias() toolbox call returned nil Mac
-126 Creating resource fork of alias file failed Mac
-127 Opening resource fork of alias file failed Mac
-128 AddResource() on alias file failed Mac
-129 WriteResource() on alias file failed Mac
-130 CloseResFile() on alias file failed Mac
-140 Special folder type specified is unknown Mac
-141 FindFolder() system call failed Mac
-150 Specified link file is actually a normal file both
-152 Could not read the alias resource Mac
-154 ResolveAlias() failed Mac
-155 Could not resolve alias path Win
-161 SetPath system call failed Win
-162 SetDescription system call failed Win
-163 IPersistFile::Save system call failed Win
-210 New filename already exists or two paths are different Win

